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Abstract

The transient response of one-dimensional multilayered composite conducting slabs to sudden variations of the
temperature of the surrounding ¯uid is analysed. The solution is obtained applying the method of separation of

variables to the heat conduction partial di�erential equation. In separating the variables, the thermal di�usivity is
retained on the side of the modi®ed heat conduction equation where the time-dependent function is collected. This
choice is the essence of composite medium analysis itself. In fact, it `naturally' gives the relationship between the

eigenvalues for the di�erent regions and then yields a transcendental equation for the determination of the
eigenvalues in a less complex form than the ones resulting from the application of traditional techniques. A new
type of orthogonality relationship is developed by the author and used to obtain the ®nal complete series solution.

The errors, which develop when the higher terms in the series solution are neglected, are also investigated. Some
calculated results of a numerical example are shown in a graphical form, by using dimensionless groups, and
therefore discussed. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Numerous applications in engineering require a

detailed knowledge of the transient temperature distri-

bution and heat ¯ux within slabs composed of two or

more di�erent layers.

One area is that of a new type of double heat ¯ux

conductimeter [1]. It is of interest when the transient

thermal response of the apparatus (i.e., two ¯uxmeter

plates and the sample material between them) has to

be evaluated in order to establish the time required to

reach its steady conditions. A second area of appli-

cation is in the ®eld of thermal analyses of buildings

[2]. In fact, for cooling and heating load calculations,
it is a basic stage to describe with great accuracy the

non steady-state thermal behaviour of multi-layer walls
and rooms.
The analysis of one-dimensional transient heat con-

duction in a composite slab consisting of several di�er-
ent layers in contact may be performed following
di�erent analytical approaches.

1. The orthogonal expansion technique [3±6]. It is
particularly suitable for solving transient problems
of composite medium of ®nite thickness without

internal heat generation (exact closed-form sol-
ution). This technique was developed ®rst by
Vodicka [3].

2. The quasi-orthogonal expansion technique [7,8]. It
solves the same composite domain problems listed
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before (exact closed-form solution). This technique

was independently developed ®rst by Tittle [7].

3. The Laplace transform method [9]. This method is

convenient for the solution of unsteady problems of

composite medium involving regions of in®nite and

semiin®nite thickness (exact closed-form solution).

4. The Green's function approach [9±12]. Transient

problems on conduction of heat in composite solids

with energy generation are usually best solved by

this approach (exact closed-form solution).

5. The Galerkin procedure [13±15]. This procedure may

be used for solving accurately several transient con-

duction problems in composite geometries.

Although it gives an approximate closed-form sol-

ution (quite accurate), it o�ers the bene®ts and limi-

tations one expects from an exact solution.

6. The ®nite integral transform technique [16]. It

allows the unsteady problem for a multi-region

medium with time-dependent heat transfer coef-

®cient to be solved (approximate closed-form sol-

ution).

In problems involving two or three space-variables, a

great economy in notation can be achieved by making

integral transforms on the space-variables [9]. As an

example, a Fourier integral transform was used in [17]

to remove a space-variable, followed by the classical

orthogonal expansion technique. Further theoretical

studies on transient heat conduction in two- and three-

dimensional composite solids are derived in [18±23].

Another mathematical technique which may pro-

vide a complementary point of view with respect to

transient multi-layer problems, and therefore, useful

physical information in spite of its algebraic and

conceptual complexity, is the search for variational

principles [24].

Therefore, there is no agreed approach to the analy-

sis of transient composite media. Consequently there

is no method of any generality for temperature

calculation and no established yardstick for assessing

candidate solution method. However, the analytical

solution of unsteady heat conduction in a composite

medium may also be obtained combining the e�ciency

of Tittle's approach [7] for the determination of the

eigenvalues with the simplicity of Vodicka's approach

[3] for the calculation of the corresponding orthogonal

eigenfunctions, as done in this paper.

Therefore, the starting point of the analytic pro-

cedure here proposed is the application of the method

Nomenclature

Bi Biot number based on ®rst layer: hL1=k1
c integration coe�cient
f �x� arbitrary initial temperature distribution for

the slab
F�x� arbitrary initial temperature di�erence: T1 ÿ

f �x�
h combined heat transfer coe�cient (convection

and long-wave thermal radiation)
k thermal conductivity

L thickness
N norm
Q heat exchanged per unit of area
t time

T slab temperature
T0 uniform initial temperature for the plane wall
T1 ¯uid temperature

x space coordinate
X 0 eigenfunction

Greek symbols
a thermal di�usivity
b dimensionless eigenvalue based on ®rst layer:

lL1

g geometric ratio: L2=L1

d thermal di�usivity ratio: a2=a1
E dimensionless error

y temperature di�erence: T1 ÿ T
y0 uniform initial temperature di�erence: T1 ÿ

T0

Y dimensionless temperature: y=y0
k thermal conductivity ratio: k2=k1
l eigenvalue (constant of separation)

x dimensionless space coordinate: x=L1

P function de®ned in Appendix A
t dimensionless time (or Fourier number) based

on ®rst layer: a1t=L 2
1

F dimensionless heat exchanged, Q=Qmax, where
Qmax is de®ned by Eq. (43)

C approximate dimensionless temperature: Yÿ E

Subscripts
i index (i.e., 1 or 2)

m integer number (positive)
max maximum
p number of eigenvalues used in the solution

1 ®rst layer �ÿL1RxR0�, left side of the com-
posite plate

2 second layer �0RxRL2�, right side of the

composite plate

Superscripts
+ dimensionless
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of separation of variables [25] to the heat conduction

equation in any one of the di�erent regions of the
solid. In separating the variables, the thermal di�usiv-
ity of each layer is retained on the side of the modi®ed

heat conduction equation (each corresponding to its
own layer) where the time-dependent function is col-
lected, like performed for the case of a single-region

problem [25]. The reason for this choice is to make the
solution consistent with the physical reality of the

problem, since the transient response of any solid to
changes in the outer boundary conditions is strictly
linked to its thermal di�usivity. We just recall that the

orthogonal expansion technique retains, in separating
the variables, the thermal di�usivity on the side of the
modi®ed heat conduction equation where the space-

dependent function is collected. Obviously, this choice
does not have any physical meaning. It is merely math-

ematical! Similarly, the Green's function approach
gives a time-variable function which is explicitly inde-
pendent of thermal di�usivity.

As far as the present procedure is concerned, since
the di�usivity is clearly discontinuous at the surfaces

of separation of the layers, the `natural' choice here
adopted requires to ®x appropriate physical constraints
at these surfaces in such a way as to ensure the conti-

nuity of heat ¯ux. In particular, such physical con-
straints will be expressed by means of mathematical
relationships linking the eigenvalues which are usually

di�erent in the di�erent regions of the composite med-
ium. As a matter of fact, these relationships were

found ®rst by Mayer [26], and then independently de-
rived by Tittle [7]. They are the essence of composite
medium analysis itself. However, apart of my own, I

know of only some transient multi-layer works [8,27]
which were drawing on these sources.
Then, the application of the boundary conditions

allows the determination of all unknown constants
(except the one related to the initial condition), includ-

ing the transcendental equation for the computation of
the eigenvalues. This equation results in a less complex
form than the ones obtained applying conventional

techniques, according to its purely physical approach.
Once the relations between the eigenvalues of the

di�erent regions are applied, it is shown that the corre-
sponding eigenfunctions resulting from the solution of
Helmholtz equations are orthogonal satisfying a new

type of orthogonality property discussed in the text,
which may be de®ned as `natural'. This property is
similar to the one given by Vodicka [3] and allows the

integration coe�cients of the solution related to the in-
itial condition to be calculated. Therefore, the exact

analytical solution is given in the form of an in®nite
series in the space-variable with an exponential time
dependency where the thermal di�usivity of the ®rst

layer explicitly appears. Then, by a suitable combi-
nation of variables and in¯uencing quantities

[11,15,21,27], this solution is represented more clearly
and concisely in a dimensionless form.

A test case is presented at the end of the paper to il-
lustrate how the proposed method works. In particu-
lar, the determination of the eigenvalues is obtained by

using an e�cient and accurate scheme, both graphical
and numerical, discussed in the text. Since an in®nite
series of eigenvalues cannot be taken into account, a

proper number of the ®rst eigenvalues for the complete
series solution is established. This number is estimated
in such a way that the exact (in®nite terms in the

series) and approximate (®nite terms in the series) tem-
peratures di�er by not more than 4% in the heaviest
conditions (i.e., initial time and boundary surfaces),
which is acceptable in most applications of engineer-

ing. The estimated number can notably be reduced for
large times, but it is here considered constant in view
of the high computational technology available today.

Some research work on this subject was presented and
published in unsteady heat conduction literature, but
only for transient single-layer problem [28]. Finally,

temperature pro®les within the two-layer composite
slab and heat exchanged during the transient heat
transfer between slab and surrounding ¯uid are pre-

sented graphically by means of non-dimensional par-
ameters.

2. Governing equations

Consider a composite plane wall consisting of two

parallel layers as shown in Fig. 1. Let k1 and k2 be
thermal conductivities, and a1 and a2 the thermal di�u-
sivities for the ®rst and second layers, respectively. In-

itially �t � 0� the two-region plate of ®nite thickness,
which is con®ned to the domain ÿL1RxRL2, is at a

Fig. 1. Schematic representation for transient heat conduction

analysis of a two-layer composite slab.
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speci®ed temperature f �x�: Suddenly, at t � 0, both
boundary surfaces of the composite slab are subjected

to combined convection and long-wave thermal radi-
ation heat ¯ux.
The assumptions made in deriving the mathematical

formulation of this time-dependent heat conduction
problem are:

1. there is no energy generation within the plane-paral-

lel solid;
2. the thermal conductivity and the thermal di�usivity

are temperature independent and uniform within

each layer;
3. the two-layer wall is su�ciently large in the y and z

directions in comparison to its thickness in the x

direction;
4. the ¯uid temperatures T1, 1 and T1, 2 are main-

tained spatially uniform;
5. the combined heat transfer coe�cients h1 and h2 are

constant in correspondence to each boundary sur-
face;

6. the ¯uid temperatures are maintained constant for

times t > 0 and are equal in values, i.e.
T1, 1=T1, 2=T1:

Because of third, fourth and ®fth assumptions, the

heat conduction problem herein under discussion may
be considered one-dimensional. Therefore, its ®nal
mathematical modelling in a rectangular coordinate

system is given as �tr0)

@ 2yi
@x 2
� 1

ai

@yi
@ t

�1�

3ki

�
@yi
@x

�
x�3Li

� hiyi�x �3Li, t� � 0 �2�

yi�x, t � 0� � Fi�x� �3�

where the negative sign is valid when i � 1; conversely,

when i � 2: The determination of the temperature dis-
tributions yi as functions of both time t and position x
requires to assign two further boundary conditions,

which are related to the surface of separation x � 0 of
the two layers. They are given for perfect thermal con-
tact [28] as �t > 0)

y1�x � 0, t� � y2�x � 0, t� �4�

k1

�
@y1
@x

�
x�0
� k2

�
@y2
@x

�
x�0

�5�

Fig. 1 shows that the origin x � 0 adopted for the

frame of reference coincides with the plane of separ-
ation of the two regions. This choice allows the ana-
lytical treatment to be notably simpli®ed when both

the inner and outer boundary conditions are applied.
However, it does not allow composites of cylindrical

and spherical layers to be treated.

3. Solution of governing equations

Eq. (1) can be solved by using the method of separ-
ation of variables [25]. As it is well-known, the depen-
dent variables yi may be separated in the form:

yi�x, t� � Xi�x� � Gi�t� �6�
When Eq. (6) is introduced into Eq. (1), we have:

1

Xi�x�
d 2Xi�x�

dx 2
� 1

aiGi�t�
dGi�t�

dt
� ÿl 2

i �7�

where the constants li are the so-called separation con-
stants, each corresponding to its own layer. It may be
noted that, in separating the variables, the thermal dif-
fusivities ai are retained on the left-hand side of Eq.

(7) where the time-dependent functions Gi�t� are col-
lected. This choice makes the functions Gi�t� explicitly
dependent on the thermal di�usivities ai, and therefore,

the analytical solution consistent with the physical re-
ality of the problem.
The separation given by Eq. (7) yields the following

ordinary di�erential equations for the determination of
the unknown functions �tr0):

dGi�t�
dt
� l 2

i aiGi�t� � 0 �8�

d 2Xi�x�
dx 2

� l 2
i Xi�x� � 0 �9�

The solutions for the time-variable functions Gi�t� are
immediately obtained from Eq. (8) as �tr0)

Gi�t� � eÿl
2
i ait �10�

Instead, the solutions for the space-dependent func-
tions Xi�x� are obtained by solving Helmholtz equation
(9). They are taken as

Xi�x� � ai cos�lix� � bi sin�lix� �11�
where ai and bi are the integration constants related to
the ®rst and second layers. Therefore, the functions

yi�x, t� are readily determined.

3.1. Application of boundary conditions

By requiring that the solutions yi�x, t� satisfy the
boundary conditions (2), (4) and (5), the following set
of algebraic equations is obtained:
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a1 � b1P1�l1 � �12�

a2 � ÿb2P2�l2 � �13�

a1eÿl
2
1 a1t � a2eÿl

2
2 a2t �14�

k1b1l1eÿl
2
1 a1t � k2b2l2eÿl

2
2 a2t �15�

where the functions P1�l1� and P2�l2� are given in
Appendix A. Since the thermal di�usivity is discon-
tinuous at the interface x � 0, Eqs. (14) and (15) are

only veri®ed when:

a1 � a2 �16�

l2
l1
�2

������
a1
a2

r
�17�

b2 �2b1

�
k1
k2

� ������
a2
a1

r
�18�

Eq. (17) relates the separation constants l1 and l2 for
the ®rst and second layers, as was found in [7,26].
Therefore, Eqs. (12), (13), (16), (17) and (18) represent

a system of ®ve nonlinear simultaneous algebraic
equations in six unknown variables, i.e. a1, b1, l1 and
a2, b2, l2 (the initial condition has still to be applied!).

Bearing in mind Eqs. (12), (13), (17) and (18) and
setting l1 � l and b1 � c, the functions Gi�t� and Xi�x�
given by Eqs. (10) and (11) may be rewritten as

G1�t� � eÿl
2a1t �tr0� �19�

G2�t� � eÿl
2a1t �tr0� �20�

X1�x� � c
�
sin�lx� �P1�l� cos�lx�

�
� ÿ L1RxR0�

�21�

X2�x� � c

�
k1
k2

� ������
a2
a1

r h
sin

� �����������
a1=a2

p
lx
�

ÿP 02�l� cos

� �����������
a1=a2

p
lx
�i

�0RxRL2 �

�22�

where the functions P1�l� and P 02�l� are still shown in
Appendix A. Therefore, the solutions y1�x, t� and
y2�x, t� have the following expressions:

y1�x, t� � c
�
sin�lx� �P1�l� cos�lx�

�
eÿl

2a1t

� ÿ L1RxR0; tr0�
�23�

y2�x, t� � c

�
k1
k2

� ������
a2
a1

r h
sin

� �����������
a1=a2

p
lx
�

ÿP 02�l� cos

� �����������
a1=a2

p
lx
�i

eÿl
2a1t

�0RxRL2; tr0�

�24�

Moreover, bearing in mind again Eqs. (12), (13), (17)
and (18) and setting l1 � l, the algebraic equation (16)

may be rewritten in the following form:

P1�l� �
�
k1
k2

� ������
a2
a1

r
P 02�l� � 0 �25�

Hence Eqs. (23) and (24) simultaneously satisfy Eqs.
(1), (2), (4) and (5), where c is an arbitrary constant

and l is any root other than zero of the transcendental
equation (25). It may be proven (Section 5) that its
roots (called eigenvalues ) are in®nite, distinct and real:
l1 < l2 < . . . lm < . . . �m � 1, 2, 3, . . .). Therefore,

there are numerous solutions having the forms (23)
and (24), each corresponding to a consecutive value of
the eigenvalues lm:

y1, m�x, t� � cmX
0
1, m�x�eÿl

2
ma1t

� ÿ L1RxR0; tr0�
�26�

y2, m�x, t� � cm

�
k1
k2

� ������
a2
a1

r
X 02, m�x�eÿl

2
ma1t

�0RxRL2; tr0�
�27�

The functions X 01, m�x� and X 02, m�x� are the eigenfunc-

tions corresponding to the eigenvalues lm, and are
de®ned as

X 01, m�x� � sin�lmx� �P1, m cos�lmx�

� ÿ L1RxR0�
�28�

X 02, m�x� � sin

� �����������
a1=a2

p
lmx

�
ÿP 02, m cos

� �����������
a1=a2

p
lmx

�
�0RxRL2 �

�29�

where P1, m � P1�lm� and P 02 , m � P 02�lm�: It may be

proven that the eigenfunctions X 01, m�x� and X 02, m�x�
de®ned before are orthogonal functions. In fact, they
satisfy the new type of orthogonality relationship
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k2

�0
ÿL1

X 01, mX
0
1, n dx� k1

�L2

0

X 02, mX
0
2, n dx

�
�
0 for m 6�n
Nm for m � n

�30�

which may be called `natural' orthogonality property

according to the `natural' choice adopted in separating
the variables. The constant Nm, called normalization
integral (norm), is de®ned as

Nm � k2

�0
ÿL1

X 0 21, m dx� k1

�L2

0

X 0 22, m dx �31�

and for this particular case it is evaluated as

Nm � k2
2

�
1�P 2

1, m

� 
L1 � 1

l 2
mk1=h1 � h1=k1

!

� k1
2

�
1�P 0 22, m

�"
L2

� 1

�a1=a2 �l 2
mk2=h2 � h2=k2

#
�32�

Then the complete solution for the temperature distri-
butions y1�x, t� and y2�x, t� is constructed by taking a
linear sum of all individual solutions given by Eqs.

(26) and (27) over all eigenvalues lm:

y1�x, t� �
X1
m�1

cmX
0
1, m�x�eÿl

2
ma1t

� ÿ L1RxR0; tr0�
�33�

y2�x, t� �
�
k1
k2

� ������
a2
a1

r X1
m�1

cmX
0
2, m�x�eÿl

2
ma1t

�0RxRL2; tr0�
�34�

3.2. Application of initial condition

We now constrain the solutions (33) and (34) to
satisfy the initial condition (3), and obtain

F1�x� �
X1
m�1

cmX
0
1, m�x� � ÿ L1RxR0� �35�

F2�x� �
�
k1
k2

� ������
a2
a1

r X1
m�1

cmX
0
2, m�x� �0RxRL2 � �36�

The coe�cients cm can be determined by using the
orthogonality relation (30) as now described. Both
sides of Eq. (35) can be multiplied by k2 � X 01, n, and the

resulting expression is integrated with respect to x
from x � ÿL1 to x � 0: Similarly, both sides of Eq.

(36) can be multiplied by
�����������
a1=a2
p � k2 � X 01; n, and the

resulting expression is integrated from x � 0 to x � L2:
We obtain

k2

�0
ÿL1

F1�x�X 01, n dx

� k2
X1
m�1

cm

�0
ÿL1

X 01, mX
0
1, n dx

�37�

k2

������
a1
a2

r �L2

0

F2�x�X 02, n dx

� k1
X1
m�1

cm

�L2

0

X 02, mX
0
2, n dx �38�

Summing up the expressions (37) and (38), and apply-

ing the orthogonality property (30), we determine the
coe�cients cm as

cm � k2
Nm

"�0
ÿL1

F1�x�X 01, m dx

�
������
a1
a2

r �L2

0

F2�x�X 02, m dx

#
�39�

If the composite slab is initially at a uniform tempera-
ture T0, then F1�x� � F2�x� � T1 ÿ T0 � y0 in Eq.

(39), and the coe�cients cm are evaluated as

cm � k2y0
Nmlm

nh
cos�lmL1 � ÿ cos

� �����������
a1=a2

p
lmL2

�i
�
h
P1, m sin�lmL1 �

ÿP 02, m sin

� �����������
a1=a2

p
lmL2

�io
�40�

3.3. Heat exchanged

The positive total amount of heat Q per unit of area
which is exchanged between composite slab and outer

¯uid up to any time t > 0 during the transient heat
transfer process may be calculated as

Q�t� �
�t
0

jh1y1
ÿ
x � ÿL1, t

0�j dt 0
�
�t
0

j ÿ h2y2
ÿ
x � L2, t

0�j dt 0 �41�

In view of both the absolute value and distributive
laws for de®nite integrals, Eq. (41) can be solved get-
ting the following result:
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Q�t� � h1
a1

�����X1
m�1

�
cm

l 2
m

ÿ
1ÿ eÿl

2
ma1t

�
X 01, m� ÿ L1 �

������
� h2

a1

�
k1
k2

� ������
a2
a1

r �����X1
m�1

� cm
l 2
m

ÿ
eÿl

2
ma1t

ÿ 1
�
X 02, m�L2 �

������
�t > 0�

�42�

where the coe�cients cm are in general given by Eq. (39).
If the two-layer slab is initially at a uniform temperature
T0, then these coe�cients are calculated by Eq. (40). In

this case, the maximum amount of heat exchanged per
unit of area, Qmax � Q�t41�, is simply given by

Qmax �
�
k1
a1

�
L1jy0j �

�
k2
a2

�
L2jy0j �43�

4. Dimensionless temperature and heat exchanged

The theoretical solution of the considered transient
heat conduction two-layer problem can be represented
more clearly and concisely by the use of suitable

dimensionless groups [11,15,21,27]. In fact, we have:

Y1�x, t� �
X1
m�1

c�mX
0
1, m�x�eÿb

2
mt

� ÿ 1RxR0; tr0�
�44�

Y2�x, t� �
���
d
p

k

X1
m�1

c�mX
0
2, m�x�eÿb

2
mt

�0RxRg; tr0�
�45�

where bm is the mth dimensionless eigenvalue, lmL1: In
particular, lm represents the mth root of the transcen-

dental equation (25) which can be rewritten as

P1�b� � P 002 �b� �46�

where the functions P1�b� and P 002 �b� are shown in
Appendix A. The eigenfunctions X 01, m and X 02, m,
expressed by Eqs. (28) and (29), become

X 01, m�x� � sin
ÿ
bmx

��P1, m cos
ÿ
bmx

�
� ÿ 1RxR0�

�47�

X 02, m�x� � sin

�
bmx=

���
d
p �
ÿP 02, m cos

�
bmx=

���
d
p �

�0RxRg�
�48�

where P1, m � P1�bm� and P 02; m �P 02�bm�: Bearing in
mind Eq. (40), which is only valid when the two-region

plane wall is initially at a uniform temperature y0, the
normalized coe�cients c�m � cm=y0 appearing in Eqs.
(44) and (45) may be calculated as

c�m �
k

N�mbm

n
cos
ÿ
bm
�ÿ cos

hÿ
g=

���
d
p �

bm

i
�P1, m sin

ÿ
bm
�ÿP 02, m sin

hÿ
g=

���
d
p �

bm

io
�49�

where N�m represents the mth dimensionless norm,

de®ned as Nm=�k1L1�: When non-dimensional variables
are used, norm Nm expressed by Eq. (32) becomes

N�m �
k
2

�
1�P 2

1, m

� 
1� 1

b 2
m=Bi1 � Bi1

!

� g
2

�
1�P 0 22, m

�8<:1
� 1hÿ

g=
���
d
p �

bm
i 2
k=�Bi2g� � Bi2g=k

9=;

�50�

Therefore, the dimensionless temperature distributions
Y1 and Y2 depend on only the following seven dimen-
sionless variables:

x, t, k, g, Bi1, Bi2, d

These variables are the sole parameters of an explicit
mathematical description of all the physical processes
taking place in the transient heat conduction of the

considered one-dimensional two-layer slab. The num-
ber of parameters a�ecting the temperature distri-
butions has been signi®cantly reduced. It may also be

observed that the dimensionless groups, t, Bi1 and Bi2,
are based on the ®rst layer [21,27].
Similarly, the amount of heat Q�t� per unit of area

exchanged between the two-layer slab and the sur-

rounding ¯uid, and expressed by Eq. (42) linked to Eq.
(40), can be represented more clearly in a dimension-
less form as follows

F�t� � 1

1� kg=d

(
Bi1

�����X1
m�1

c�m
b 2
m

ÿ
1ÿ eÿb

2
mt
�
X 01, m� ÿ 1�

�����
� Bi2

���
d
p

k

�����X1
m�1

c�m
b 2
m

ÿ
eÿb

2
mt ÿ 1

�
X 02, m�g�

�����
)
�t > 0�

�51�
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5. Example of application

With reference to the examined transient two-
region problem, we assume for the non-dimensional

quantities listed before the following values: g � 2,
k � 2, d � 1, Bi1 � 1 and Bi2 � 2: Of course,

both the regions are initially at a uniform tempera-
ture y0:

Fig. 2. P1 as a function of dimensionless eigenvalue b (a). P 002 as a function of dimensionless eigenvalue b (b). P1 and P 002 vs. b (c).
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5.1. Determination of the eigenvalues

The ®rst step concerns the determination of the
eigenvalues bm: For the numerical example here pro-

posed the functions P1�b� and P 002 �b�, formally de®ned
in Appendix A and appearing in transcendental
equation (46), become

P1�b� � b� tan�b�
1ÿ b tan�b�

P 002 �b� � ÿ
1

2

�2b� � 2 tan�2b�
2ÿ �2b� tan�2b�

�52�

In this case, it is not possible to obtain an explicit sol-
ution for the eigenvalues bm: However, the transcen-
dental equation (46) linked to Eq. (52) can be solved
(and the bm values estimated) by means of both a

graphical and a numerical scheme, as discussed below.
To have an idea about the distribution of the real

and distinct roots of Eq. (46), it may be useful to plot

the functions P1�b� and P 002 �b� against b, as shown in
Fig. 2(a) and (b), respectively.
In particular, since P1�b� is a periodic function, its

graph crosses the b-axis (where P1 � 0� in®nite times.
The corresponding values of b are the solutions to the
transcendental equation b� tan�b� � 0: Moreover, the
curve P1�b� has in®nite vertical asymptotes, whose cor-

responding values of b may be determined as the sol-
utions to the equation 1ÿ b tan�b� � 0:
Similarly, the curve P 002 �b� cuts the b-axis (where

P 002 � 0� in®nite times. The corresponding values of b
represent the solutions to the equation �2b� �
2 tan�2b� � 0: Additionally, the curve P 002 �b� presents

in®nite vertical asymptotes, whose corresponding b
values are given as the roots of the equation 2ÿ
�2b� tan�2b� � 0:

Table 1 shows some of these signi®cant values of b
for P1�b� and P 002 �b�: If these functions are drawn on

the same rectangular axes, as shown in Fig. 2(c), the b-
values of the in®nite intersection points of the two

curves give the solutions (in®nite, distinct and real
roots) to the transcendental equation (46) linked to

Eq. (52). At these points it will in fact result in

P1�b� � P 002 �b�:
In addition, bearing in mind Table 1, Fig. 2(c)

shows that the positive roots lie one in each of the

intervals listed in Table 2 (in particular, only the ®rst
17 ranges have been considered). Once these intervals

have been established, it is a simple matter `to build' a

Table 1

Signi®cant values of b for P1 and P 002

P1�b� function P 002 �b� function

Vertical asymptotes �b � 0) P1�b� � 0 Vertical asymptotes �b � 0) P 002 �b� � 0

20.8603 22.0288 20.53845 21.14445

23.4256 24.9132 21.8218 22.5435

26.4373 27.9787 23.28915 24.0481

29.5293 211.0856 24.8148 25.58635

212.6453 214.2075 26.36115 27.1382

215.7713 217.3364 27.9168 28.6966

± ± 29.4773 210.25875

± ± 211.04075 211.82315

± ± 212.60595 213.38905

± ± 214.1724 214.95595

± ± 215.7397 216.5236

± ± 217.3076 218.09175

Table 2

First 17 roots of the transcendental equation (46) linked to

Eq. (52)

m bm Interval Value of bm

1 b1 0.538454 0.8603 0.6150667

2 b2 1.144454 1.8218 1.5436569

3 b3 2.02884 2.5435 2.2845548

4 b4 3.289154 3.4256 3.3173428

5 b5 4.04814 4.8148 4.4454150

6 b6 4.91324 5.58635 5.2652385

7 b7 6.361154 6.4373 6.3765322

8 b8 7.13824 7.9168 7.5254517

9 b9 7.97874 8.6966 8.3582468

10 b10 9.47734 9.5293 9.4877882

11 b11 10.258754 11.04075 10.6403975

12 b12 11.08564 11.82315 11.4771473

13 b13 12.605954 12.6453 12.6138397

14 b14 13.389054 14.1724 13.7672471

15 b15 14.20754 14.95595 14.6056780

16 b16 15.73974 15.7713 15.7460178

17 b17 16.52364 17.3076 16.8995043
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suitable 17-vector of initial guesses b1; i, b2; i, . . .,

b17; i for Eq. (46) and, therefore, to ®nd its roots by

standard routines. It should be noted that `the build-

ing' of this vector in general represents the starting

step and the most di�cult step for reaching the conver-

gence of any routine able to compute real roots of any

real equation.

Therefore, the graphical representation of the

functions P1�b� and P 002 �b� allows the ®rst intervals

where the ®rst real roots of Eq. (46) fall into to be

established. Then, applying an algorithm based on

Muller's method [29], the values of the eigenvalues

can readily be obtained. They are shown in Table 2.

Moreover, the negative roots are equal in absolute

value to the positive ones and there are no repeated

roots.

5.2. Approximation for small and large times

Once the ®rst eigenvalues of Eq. (46) have been
determined, the second step concerns the estimation of
the number p of eigenvalues which has to be employed

in the series of Y1 and Y2: To this aim the above
series, formally represented by Eqs. (44) and (45), may
also be rewritten as

Y1�x, t� �
Xp
m�1

c�mX
0
1, m�x�eÿb

2
mt � E1�x, t, p�

� C1�x, t, p� � E1�x, t, p�

� ÿ 1RxR0; tr0�

�53�

Fig. 3. Approximate dimensionless temperature F for t � 0 as a function of x with p as a parameter (a). Maximum percent error

(%) vs. x with p as a parameter (b).
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Y2�x, t� �
���
d
p

k

Xp
m�1

c�mX
0
2, m�x�eÿb

2
mt � E2�x, t, p�

� C2�x, t, p� � E2�x, t, p�

�0RxRg; tr0�

�54�

where C1 and C2 represent approximate dimensionless

temperatures depending on the eigenvalue number p.
In particular, Ci�x, t, p � 1� �i � 1, 2� may be termed
the ®rst partial sum of the series Yi�x, t�, Ci�x, t, p �
2� the second partial sum, Ci�x, t, p � n� the nth par-
tial sum, and so on.
Large deviations between the exact Yi and approxi-

mate Ci solutions develop for small time t, that is at
the beginning of a heating or cooling process, since
many terms of the in®nite series (44) and (45) are
required to calculate the temperature distribution in

the composite slab. As the maximum deviation is

obtained for t � 0, the time t � 0 is of interest in
order to analyse the e�ect of the number p on the ap-

proximate solution.
Graphs of Ci�x, t � 0, p� for di�erent values of p are

illustrated in Fig. 3(a). This ®gure shows that the func-

tions Ci�x, t � 0, p� are continually approximating
towards a de®nite limit as more and more partial sums
are taken (i.e., the eigenvalue number p increases), and

in the limit �p41� will have the sum Yi�x, t � 0� � 1:
From Fig. 3(a) it may be noted that when p � 17

the di�erence between exact and approximate tempera-

ture is quite small. To establish some criterion under
which this temperature di�erence can be considered
small, we de®ne a maximum percent error Ei; max�x,
p��%� �i � 1, 2� as

Ei, max�x, p��%� � Yi�x, t � 0� ÿCi�x, t � 0, p�
Yi�x, t � 0� � 100

Fig. 4. Transient-temperature chart for a two-layer slab having g � 2, k � 2, d � 1, Bi1 � 1 and Bi2 � 2: (a) Dimensionless tem-

perature vs. x with t as a parameter. (b) Dimensionless temperature and heat transferred vs. t (with x as a parameter for only Y).
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where Yi�x, t � 0� � 1: Graphs of Ei, max�x, p� are
plotted in Fig. 3(b). When p � 9 the maximum percent

error is maximum at x � g � 2, where it is equal to
about 7%. Instead, when p � 17, the maximum per-
cent error is still maximum at x � g � 2, where it is

equal to about 3.6%.
Therefore, when p � 17, the exact and approximate

dimensionless temperatures di�er by not more than

3.6% in the heaviest conditions, i.e. for t � 0 and x �
g � 2: Although for su�ciently large time t the num-
ber p can notably be reduced, we ®x p � 17 for the cal-

culation of temperature and heat exchanged for both
small and large times in view of the availability today
of a high computer technology.

5.3. Dimensionless temperature and heat transferred

Once the number p of eigenvalues has been estab-
lished, the dimensionless temperatures Y1�x, t� and

Y2�x, t�, as well as the dimensionless heat exchanged
F�t�, may be calculated. The results are graphically
presented in Fig. 4.

Fig. 4(a) gives the dimensionless temperature Y as a
function of the dimensionless position x for several
di�erent values of the parameter t: For t � 0, we have

Y � 1: For large values of t, the dimensionless tem-
perature becomes small according to the thermal equi-
librium (steady end-state) which is going to be reached
between slab and surrounding ¯uid.

Fig. 4(b) relates the temperature Y to di�erent times
t with x as a parameter. Fig. 4(b) also shows the
dimensionless heat F transferred during the transient

process as a function of the dimensionless time t: Once
x and t have been given, Fig. 4(b) allows Y and F for
the considered two-layer slab to be graphically evalu-

ated.

6. Conclusions

A `natural' analytic approach for solving one-dimen-
sional transient heat conduction in a composite slab,
whose layers are in perfect thermal contact, has been

developed. It combines the e�ciency of Tittle's
approach for the determination of the eigenvalues with
the simplicity of Vodicka's approach for the calcu-
lation of the orthogonal eigenfunctions. The combined

method is relatively simple and particularly convenient
when compared with classical methods heretofore
employed.

The obtained solution gives a complete description
of the thermal ®eld in any one of the two layers and
allows the heat exchanged between composite slab and

surrounding ¯uid to be established. The exact closed-
form solution is of the form of an in®nite series in the
space-variable with an exponential time dependency

where the thermal di�usivity of the ®rst layer explicitly
appears. Dimensionless variables and groups have

been introduced to simplify the representation of the
formal solution to the transient two-layer problem.
A numerical example has allowed the slab tempera-

ture pro®le and the heat exchanged with the surround-
ing ¯uid during the transient process to be calculated.
The results have been presented in the form of charts

for ready reference. No special equation for very small
time has been derived, as well as no particular approxi-
mation for su�ciently large time has been used, in

view of the very high computing technology available
today.
The method of analysis can be applied to composites

of any number of layers, although solutions for only

two material composite slabs have been presented in
this paper.

Appendix A

The functions Pi�li � �i � 1, 2), appearing in Eqs.
(12) and (13), are:

Pi�li � � kili � hi tan�liLi �
hi ÿ kili tan�liLi �

Bearing in mind Eq. (17) and setting l1 � l, the func-
tions Pi become

P1�l� � k1l� h1 tan�lL1 �
h1 ÿ k1l tan�lL1 �

P2�l� �2P 02�l�

P 02�l� �
k2

�����������
a1=a2
p

l� h2 tan
ÿ �����������

a1=a2
p

lL2

�
h2 ÿ k2

�����������
a1=a2
p

l tan
ÿ �����������

a1=a2
p

lL2

�
where the positive sign has to be chosen when the sep-
aration constant ratio, l2=l1, de®ned by Eq. (17) is
positive; conversely, the negative sign when this ratio

is negative. When normalized variables are used, the
functions P1�l� and P 02�l� become

P1�b� � b� Bi1 tan�b�
Bi1 ÿ b tan�b�

P 02�b� �
�ÿ
g=

���
d
p �

b
�
� �Bi2g=k� tan

�ÿ
g=

���
d
p �

b
�

�Bi2g=k� ÿ
�ÿ
g=

���
d
p �

b
�

tan
�ÿ
g=

���
d
p �

b
�

A new function called P 002 �b� has been introduced in

Eq. (46). It is de®ned as

P 002 �b� � ÿ
���
d
p

k
P 02�b�:
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